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bstract

This work elucidates the role of power-law rheology on the sedimentation velocity of an ensemble of mono-size spherical Newtonian droplets
free from surfactants) translating in a power-law continuous phase numerically by solving the momentum equations of both phases. A simple
phere-in-sphere cell model has been used to account for inter-drop interactions. In particular, in this study, the effects of the Reynolds number
Reo), the internal to external fluid characteristic viscosity ratio (k), the volume fraction of the dispersed phase (Φ) and the power-law index of
he continuous phase (no) on the external flow field, pressure drag (Cdp), friction drag (Cdf) and total drag (Cd) coefficients have been analyzed

ver wide ranges of parameters as follows: 1 ≤ Reo ≤ 200, 0.1 ≤ k ≤ 50, 0.2 ≤ Φ ≤ 0.6 and 0.6 ≤ no ≤ 1.6. Based on the extensive numerical results
btained in this work, a simple predictive correlation has been proposed for the total drag coefficient, which can be used to predict the rate of
edimentation of ensembles of Newtonian fluid spheres in power-law liquids in a new application.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Due to their overwhelming applications in many chemical,
iochemical and material processing industries, the motion of
nd mass transfer from drops in viscous liquids has received con-
iderable attention in the literature. Typical applications include
iquid–liquid extraction, liquid–liquid fluidization, bubble col-
mn reactors [1], sparged reactors, degassing of polymeric melts
nd glasses, production and stability of emulsions in paint, food
rocessing [2], in personal care products and detergent indus-
ries, pipeline transport of oil/water emulsions, etc. [3,4]. In
iquid–liquid contacting equipment, one fluid is often dispersed
n the form of droplets in another immiscible fluid. For instance,
he knowledge of the sedimentation velocity facilitates the siz-
ng of contacting system if the desired residence time is known
rom other considerations, or conversely, for an existing system,

t is used to calculate the mean contacting time. Similarly, the
ate of sedimentation also helps in ascertaining the stability of
n emulsion or the ease of separation by gravity depending upon

∗ Corresponding author. Tel.: +91 512 2597393; fax: +91 512 2590104.
E-mail address: chhabra@iitk.ac.in (R.P. Chhabra).
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n envisaged application. Therefore, the steady incompressible
otion of an ensemble of liquid drops in another immiscible
uid medium represents an idealization of many industrially

mportant applications. Hence, the sedimentation behaviour of
nsembles of fluid spheres is a prerequisite for the understand-
ng and designing of these transport processes. Therefore, the
eed to predict the rate of settling of liquid–liquid dispersion
requently arises in process engineering calculations. Experi-
ental determination of the settling velocity of ensembles of

rops is rather difficult due to the inherent difficulties. On the
ther hand, theoretical and/or numerical approach to the anal-
sis of such systems can lead to useful methods to predict the
ate of sedimentation of droplets while designing liquid–liquid
ontacting equipments. Consequently, over the years, consider-
ble research efforts have been directed at developing reliable
ethods for the prediction of the rate of translation of single and

nsembles of Newtonian droplets in an immiscible Newtonian
edia [5–7]. It is customary to express this information in terms

f the usual Reynolds number, drag coefficient and the other

ertinent dimensionless groups.

On the other hand, it is readily recognized that many high
olecular weight polymers and their solutions, slurries, foams

nd emulsions encountered in several industrially important

mailto:chhabra@iitk.ac.in
dx.doi.org/10.1016/j.cej.2007.07.092
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Nomenclature

Cd total drag coefficient
Cdf friction drag coefficient
Cdp pressure drag coefficient
dr mesh size in r-direction
dt time-step size
dθ mesh size in θ-direction
k internal to external fluid characteristic viscosity

ratio
m power-law consistency index (Pa sn)
n power-law flow behaviour index
p pressure
QUICK quadratic upstream interpolation of convective

kinematics
r radial distance
R drop radius (m)
R∞ cell boundary
Re Reynolds number
SMAC simplified marker and cell
Uo settling velocity (m s−1)
vr r-component of velocity
vθ θ-component of velocity
vφ φ-component of velocity

Greek symbols
Φ volume fraction of the dispersed phase
Πε second invariant of the rate of strain tensor (s−2)
ε rate of strain tensor (s−1)
φ Azimuthal direction (◦)
η dynamic viscosity (Pa s)
λ internal to external fluid density ratio, ρi/ρo
θ streamwise direction (◦)
ρ density of fluid (kg m−3)
τ shear stress (Pa)

Subscripts
i Internal flow variable
o External flow variable
r r-component
φ φ-component
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for instance, using this approach, approximate upper/lower
θ θ-component

pplications display a range of non-Newtonian characteris-
ics including shear-thinning, shear-thickening, yield stress and
isco-elastic behaviour [8]. Despite their wide occurrence in
iverse industrial applications, very little information is avail-
ble on the sedimentation velocity of ensembles of drops in
on-Newtonian fluids, especially beyond the creeping flow
egime [4], though adequate information is available on the
rag behaviour of a single bubble [9–13], a single solid particle
14,15] and a single drop [16–20] settling in quiescent power-

aw media. Similarly, some results are also available on the rise
elocity of swarms of spherical bubbles [21–25] in power-law
uids encompassing the creeping and potential flow regimes

b
o
N
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ith limited results in the intermediate Reynolds number region.
herefore, this work is concerned with the numerical investiga-

ion of the drag behaviour of ensembles of mono-size Newtonian
pherical droplets sedimenting in power-law liquids at moder-
te Reynolds numbers. It is, however, appropriate to start with a
hort review of the scant literature available in this field.

. Previous work

In order to describe the relative motion between ensembles
f drops and a continuous phase, in addition to the usual con-
ervation laws, one needs to have a mathematical description of
he inter-drop hydrodynamic interactions. Broadly, there are two
pproaches available in the literature to describe the inter-drop
ydrodynamic interactions. In the first approach, the govern-
ng field equations are solved for a specific configuration of
rops (such as triangular, simple cubic, body centred cubic, face
entred cubic, periodic arrays, etc.). Although, this approach
s rigorous, extrapolation of results even to a slightly differ-
nt configuration is generally not possible [4]. These results are
requently expressed in the form of a correction factor to be
pplied to the case of a single droplet and the correction factor
s a strong function of the concentration of the dispersed phase,
nd the type of packing of droplets enters via the corresponding
aximum packing fraction. As far as known to us, this approach

as not been extended to finite Reynolds number situations even
or Newtonian fluids, let alone to non-Newtonian liquids. In
he second approach, somewhat less rigorous, inter-drop hydro-
ynamic interactions are approximated by postulating the each
uid sphere to be surrounded by a hypothetical concentric enve-

ope of the continuous phase. The size of this cell is chosen
uch that the volume fraction of the dispersed phase in each
ell is equal to the overall mean volume fraction of the dis-
ersed phase in the ensemble. This approach is equivalent to
mposing a wall effect on a single particle. Thus, Happel [26]
roposed the cell boundary to be frictionless thereby empha-
izing the non-interacting nature of cells. On the other hand,
uwabara [27] advocated the use of the zero vorticity condition

t the cell boundary. While this approach has been quite success-
ul in a range of settings, it is also open to criticism especially in
erms of the boundary condition prescribed on the cell bound-
ry. While it is virtually impossible to offer a sound theoretical
ustification for either of these boundary conditions, suffice it to
ay here that owing to the extra dissipation in the zero vortic-
ty cell model, the resulting values of the drag coefficients are
arger than those obtained by using the free surface cell model
4], though both models have been used extensively in the litera-
ure to model transport processes in concentrated multi-particle
ystems and currently available experimental results are not able
o discern between these two models.

The free surface cell model has been extensively used to
tudy the Newtonian and other generalized Newtonian fluids
ow through clusters of bubbles, drops and solid particles. Thus,
ounds and numerical results on drag coefficients for swarms
f spherical bubbles rising in Newtonian and in generalized
ewtonian fluids including power-law fluids, Carreau model
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uids [18,21–25,28,29] are now available in the literature.
hus, combined together, the currently available results on
ubble swarms in power-law fluids encompass the creeping and
otential flow regimes, with limited results being available in
etween these two limits. Lee et al. [30] have employed these
wo cell models to contrast the analytical and numerical results
f convective mass transfer rates of swarms of circulating
ubbles in a Newtonian medium for moderate concentrations
f bubbles in the swarm. Similarly, there are a few studies
elated to the flow and mass/heat transfer in Newtonian and
ther generalized Newtonian fluids in fixed and fluidized beds
f solid spheres using both these cell models [31–34]. Detailed
xamination of these results shows a good match with the
onventional capillary models, especially at high values of
oidage [35,36]. Other applications of this approach include
he electrophoresis of a concentrated spherical dispersion in a
arreau fluid under the conditions of low electric potential and
eak externally applied electric field [37,38].
In contrast, very little information is available on the sedi-

entation of ensembles of drops translating even in Newtonian
iquids, let alone in non-Newtonian continuous phase. Gal-Or
nd Waslo [39] were the first to use the free surface cell model
o study the creeping motion of ensembles of mono-size drops
n another immiscible Newtonian liquid with and without the
resence of surfactants. Subsequently, this approach has been
xtended to predict the drag on ensembles of drops moving
lowly (creeping region) in power-law and other generalized
ewtonian fluids [40–44]. Tripathi and Chhabra [45] extended

he study of Gal-Or and Waslo [39] to the case when both phases
bey power-law fluid behaviour. This model has also been used
uccessfully to capture the sedimentation behaviour of two-fluid
pheres [46] and of composite spheres [47] in the creeping flow
egime. Recently, Jung and Lee [48] analytically studied the flow
eld in ensembles of fluid spheres in low Knudsen regime using

hese two cell models. Subsequently, they have evaluated a gen-
ral solution for the flow field around ensembles of fluid spheres
n the low Knudsen number regime. Beyond the creeping flow
onditions, only Kishore et al. [7] have numerically solved the
omplete Navier–Stokes equations for both (Newtonian) phases
imultaneously up to moderate Reynolds numbers of 500.

The aforementioned range of applications shows the
xtremely versatile nature of this simple approach. Therefore,
he free surface cell model has been used in this work to exam-
ne the role of power-law rheology of the continuous phase
n the sedimentation of an ensemble of mono-size Newtonian
rops in a quiescent power-law liquid. In particular, extensive
umerical results are reported for wide ranges of the pertinent
imensionless parameters.

. Problem statement and description

Consider an ensemble of mono-size and clean Newtonian
pherical droplets of radius R translating steadily in a quiescent

ower-law liquid as shown schematically in Fig. 1(a). Both
continuous and dispersed) phases are assumed to be incom-
ressible. The surface tension is assumed to be large (i.e., Weber
umber is very small) so that the drops retain their spherical

•

ig. 1. (a) Schematic representation of the flow and (b) the cell model idealiza-
ion.

hape under all conditions encompassed in this investigation.
ased on the currently available experimental information,

t is known that for Newtonian systems, considerable droplet
scillations or deviations from the spherical shape occur beyond
critical value of Weber number of approximately 4. This value
orresponds to the Reynolds number in the range of 300–1000
epending upon the system properties. Though no analogous
nformation is available for droplets in power-law liquids, the
cant analytical and experimental results seem to suggest that
he visco-elasticity causes much greater shape distortions than
he shear-dependent viscosity of the continuous phase [4]. In
iew of this, the aforementioned criterion is assumed to apply
n the present case also, at least as a first approximation. Within
he framework of the free surface cell model, the inter-drop
ydrodynamic interactions are approximated by postulating
ach drop to be surrounded by a hypothetical envelope of
ontinuous fluid of radius R∞ as shown in Fig. 1(b). The size
f the envelope is chosen such that the volume fraction of the
ispersed phase of each cell is equal to the overall mean volume
raction of the dispersed phase in the system. Qualitatively, this
pproach hinges on the fact that the increased drag on a single
rop in an ensemble due to the hydrodynamic interactions with
he neighbouring drops can be approximated by imposing an
quivalent wall effect. This approach converts a difficult many
ody problem into a conceptually simpler one body equivalent
y indirectly accounting for inter-drop interactions, in terms of
rop hold-up which is function of the outer domain radius (R∞).
t is also appropriate to add here that while in real systems wake
nteractions occur which can lead to distorted shapes and lift
orces, especially in concentrated systems. While these effects
an give rise to a chaotic behaviour and produce complex flow
eld, but the overall drag is believed to be influenced mainly
y the concentration of the dispersed phase.

A spherical coordinate system (r, θ, φ) with its origin located
t the centre of the drop is employed here, polar axis (θ = 0)
s directed along the direction of flow as shown in Fig. 1(b).
he flow is two-dimensional, thus, vφ = 0 and no flow variable
epends upon the φ-coordinate. The dimensionless governing
quations (in their conservative form) for this flow, in both
hases, can be written as follows:
Continuity equation

1

r2

∂

∂r
[r2(vr)i,o] + 1

r sin θ

∂

∂θ
[(vθ)i,o sin θ] = 0 (1)
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r-Component of momentum equation

∂(vr)i,o

∂t
+ 1

r2

∂

∂r

[
r2(vr)

2
i,o

]
+ 1

r sin θ

∂

∂θ
[(vr)i,o(vθ)i,o sin θ]

− (vθ)2
i,o

r
=−∂pi,o

∂r
+2(ni,o+1)

Rei,o

[
(εrr)i,o

∂ηi,o

∂r
+ (εrθ)i,o

r

∂ηi,o

∂θ

]

+2ni,oηi,o

Rei,o

[
1

r2

∂2

∂r2 (r2(vr)i,o)+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂(vr)i,o

∂θ

)]

(2a)

θ-Component of momentum equation

∂(vθ)i,o

∂t
+ 1

r2

∂

∂r
[r2(vr)i,o(vθ)i,o] + 1

r sin θ

∂

∂θ

[
(vθ)2

i,o sin θ
]

+ (vr)i,o(vθ)i,o

r
= −1

r

∂pi,o

∂θ

+2(ni,o+1)

Rei,o

[
(εrθ)i,o

∂ηi,o

∂r
+ (εθθ)i,o

r

∂ηi,o

∂θ

]

+2ni,oηi,o

Rei,o

[
1

r2

∂

∂r

(
r2 ∂(vθ)i,o

∂r

)

+ 1

r2

∂

∂θ

(
1

sin θ

∂

∂θ
[(vθ)i,o sin θ]

)
+ 2

r2

∂(vr)i,o

∂θ

]
(2b)

where subscripts i, o denote the internal (dispersed) and exter-
nal (continuous) flow variables, respectively.

For an incompressible fluid, the extra stress tensor is related
o the rate of the strain tensor as [49]:

xy = 2ηεxy; x, y = r, θ, φ (3)

nd the viscosity of a power-law liquid is given by:

=
(∏

ε

2

)(n−1)/2

(4)

hereΠε is the second invariant of the rate of deformation tensor
nd its expression in terms of vr, vθ, vφ and their derivatives is
vailable in standard books (e.g., see Ref. [49]).

In Eqs. (1)–(4), the velocity terms have been scaled using Uo,
adial coordinate r using the drop radius R, pressure using (ρU2

o ),
omponents of the rate of strain tensor by (Uo/R), viscosity by a
eference viscosity ηref, shear stress by ηref(Uo/R) and time by
R/Uo). Here ηref is defined as ηref = m(Uo/R)(n−1), where m is
he power-law fluid consistency index and n is the power-law
ehaviour index.

The Reynolds number is defined as follows:

eo = ρoU
(2−no)
o (2R)no

mo
(5)

bviously, the two Reynolds numbers, Rei and Reo are inter-

elated via the characteristic viscosity ratio and density ratio as
ollows:

ei = Reoλ

k
(6)

o
p
d
F
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here, ρ is the density of fluid, λ is the density ratio (=ρi/ρo)
nd k is the characteristic viscosity ratio defined as:

=
(

ηi

mo

) (
2R

Uo

)(no−1)

(7)

lthough our main interest here is to obtain the steady state solu-
ion, the transient terms are retained in Eqs. (2a) and (2b) as the
alse-transient scheme has been used to solve these equations.

As noted earlier, the radius of the outer spherical envelope can
e related to the overall mean volume fraction of the dispersed
hase, Φ, as:

∞ = Φ−1/3 (8)

herefore, by simply varying the value of R∞, one can simu-
ate the ensembles of various volume fractions of the dispersed
hase including the limiting case of a single droplet by setting
∞ → ∞, i.e., Φ → 0. Conversely, one can readily calculate the
alue of R∞ for known values of the volume fraction of the
ispersed phase and the droplet size.

The dimensionless boundary conditions for this flow config-
ration within the framework of the free surface cell model can
e written as follows:

At the cell boundary (r = R∞):

(vr)o = − cos θ (9a)

(τrθ)o = 0 (9b)

At the liquid–liquid interface (r = 1):

(vr)i = (vr)o = 0 (10a)

(vθ)i = (vθ)o (10b)

(τrθ)i = (τrθ)o (10c)

Along the axis of symmetry (θ = 0, π):

(vθ)i = 0;
∂(vr)i

∂θ
= 0 (11a)

(vθ)o = 0;
∂(vr)o

∂θ
= 0 (11b)

At the centre of the fluid sphere (r = 0):

(vr)i and (vθ)i remain finite (12)

Due to the zero shear stress condition, the cell boundary
s frictionless thereby emphasizing the non-interacting nature
f the cells [4,26]. All other boundary conditions used herein
re fairly standard, e.g., see Refs. [4–6], but are briefly elab-
rated here. Eqs. (10a)–(10c) imply the zero radial mass flux,
he continuity of the tangential velocity and of the shear stress,
espectively, at the surface of the drop. Eqs. (11a) and (11b) arise
rom the symmetry considerations of the flow in the range of con-
itions, mainly the Reynolds number. This justifies the solution

f the equations to be obtained only in half of the domain, as the
ressure and velocity fields in the upper and lower halves of the
rop for Reo ≤ 200 are simply the mirror image of each other.
inally Eq. (12) simply ensures that the velocity components at
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he centre of the drop are bounded and finite. Eqs. (1), (2a) and
2b), subject to the boundary conditions outlined in Eqs. (9)–(12)
rovide the theoretical framework to map the flow domain, i.e.,
≤ r ≤ 1, 1 ≤ r ≤ R∞ and 0 ≤ θ ≤ π, in terms of vri, vθi, pi and
ro, vθo, po for a range of the Reynolds numbers, characteristic
iscosity ratio, volume fraction of the dispersed phase and the
ower-law index. Once the fully converged velocity and pres-
ure fields are known, the individual and total drag coefficients
an be evaluated as described below. The total drag coefficient
s defined as:

d = 2FD

ρoU2
oπR2 (13)

he pressure component Cdp is evaluated as:

dp = 2
∫ π

0
[po sin 2θ]r=1 dθ (14a)

nd the frictional component Cdf is evaluated as:

df = 2(no+2)

Reo

∫ π

0

{
ηo

[(
∂(vθ)o

∂r
− (vθ)o

r

)
sin2 θ

−
(

∂(vr)o

∂r

)
sin 2θ

]}
r=1

dθ (14b)

he total drag coefficient Cd is simply the sum of Cdp and Cdf.
he drag coefficient (or the sedimentation velocity) is expected

o be a function of the Reynolds number, characteristic viscosity
atio, density ratio, power-law index and the concentration of the
ispersed phase, and this relationship is developed in this work
y seeking the numerical solutions to the governing equations.

. Numerical methodology

Owing to the internal circulation, the motion of a drop in
nother immiscible fluid medium is different from that of a non-
irculating bubble and of a solid particle. Therefore, one needs
o solve the governing equations of both dispersed and continu-
us phases simultaneously which are coupled via the conditions
equiring the continuity of the velocity and tangential stress at
he interface. The governing Eqs. (1), (2a) and (2b) subject to the
oundary conditions outlined in Eqs. (9)–(12) have been solved
sing a finite difference method based SMAC-implicit algorithm
n a staggered grid arrangement. SMAC-implicit algorithm is
simplified version of the MAC method [50] which has been

dapted here for power-law fluids. The application of an implicit
lgorithm on a staggered grid arrangement avoids the numeri-
al instability commonly encountered at relatively low Reynolds
umbers and shear-thinning fluids. Since the detailed descrip-
ions of the numerical solver used in this work are available
lsewhere [7,19], only the salient features are recapitulated
ere. For both phases, the diffusive and non-Newtonian terms
ave been discretized using the second order central difference
cheme and the convective terms with the QUICK scheme [51].

he solution procedure is initiated at the centre of the drop (r = 0)
ntil the drop surface (r = 1) is reached using the relevant bound-
ry conditions for the inner fluid with the previous level value
or (vθ)o assumed on the drop surface for the purpose of imple-

r
r
s
s
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enting the boundary conditions on the surface of the drop. In
ddition, the interfacial tangential velocity and pressure com-
onents on the surface of the drop resulting from the internal
ow calculations have been used as boundary values for the
uter fluid calculations for the same time-step. This sequence is
ontinued until the continuity of the tangential velocity and the
hear stress is satisfied within the prescribed level of tolerance
nd the so-called steady-state solution is obtained. The steady-
tate convergence criterion is fixed as, the maximum difference
f any quantity between the two consecutive time-steps divided
y 
t should fall below 10−3, i.e.,

|zt+1 − zt|

t

≤ 10−3 (15)

n all cases, the approach to the convergence was asymptotic,
lthough the number of time-steps required to achieve the
teady-state is strongly dependent on the values of Reo, no, k and
. However, for shear-thickening fluids (no > 1) convergence is

aster than for shear-thinning fluids (no < 1) for same values of
eo, k and Φ. Finally, the fully converged velocity and pressure
elds were used to evaluate the derived quantities such as the

ndividual and total drag coefficients, streamlines and vorticity
ontours, distributions of the viscosity, pressure, vorticity and
angential velocity on the surface of the drop, etc. The drag val-
es, in turn, can be used to estimate the settling velocity of an
nsemble of known characteristics.

.1. Grid details

The boundary layer is expected to be thin at large Reynolds
umbers and therefore, the grid needs to be sufficiently fine near
he free surface. Furthermore, this problem becomes increas-
ngly acute as the concentration of the dispersed phase is
rogressively reduced and the system approaches the single
phere limit [7]. Based on our previous study [7], it was found
hat a grid of size 60 × 70 (i.e., 3◦ × 0.025 in angular and radial
irections, respectively) was adequate to resolve the flow over
he range of conditions as 1 ≤ Reo ≤ 200 and 0.1 ≤ k ≤ 50. In
his work, it is demonstrated that this grid can also be used when
he continuous phase is a power-law medium. Three grids of
izes 45 × 70 (i.e., 4◦ × 0.025), 60 × 70 (i.e., 3◦ × 0.025) and
0 × 85 (i.e., 3◦ × 0.02) have been used to simulate the results
or no = 0.6 and no = 1.6, Φ = 0.2 at Reo = 200 and for k = 0.1
nd 10, as shown in Table 1. Broadly speaking, differences in
he values of the individual and total drag coefficient for any
ombination of the conditions are of the order of ±1–1.5%. For
ll values of the power-law index and the characteristic viscos-
ty ratio, the difference between the drag values obtained with
rids 45 × 70 and 60 × 70 is more than between that with grids
0 × 70 and 60 × 85. The improvement in the values of the total
rag coefficient from the grid 60 × 85 compared to those by
sing grid 60 × 70 is negligible, but at an expense of significant
ncrease in the CPU time. According to Roache [52], if the grid

efinement ratio and the overall order of the scheme ≤2, then the
elative difference is optimistic and conservative. Thus, a grid of
ize 60 × 70 has been used for all calculations reported in this
tudy.
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Table 1
Grid independence study for the power-law flow past an ensemble of dispersed
phase concentration, Φ = 0.2 at Reo = 200

Grid size no = 0.6 no = 1.6

Cdp Cdf Cd Cdp Cdf Cd

k = 0.1
45 × 70 0.1841 0.0852 0.2693 0.3259 0.4959 0.8218
60 × 70 0.1906 0.0880 0.2786 0.3307 0.4998 0.8305
60 × 85 0.1878 0.0862 0.2740 0.3269 0.4977 0.8246

k = 10
45 × 70 0.7731 0.2619 1.0350 1.9900 1.9302 3.9202
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Table 2
Comparison of the present values of Cd for the slow motion (Reo = 1) of New-
tonian and shear-thinning liquids

Hold-up (Φ) Power-law
index (no)

Total drag coefficient (Cd)

Jarzebski and
Malinowski [40]

Present

k = 0.1

0.2 1 42.96 42.1083
0.8 33.24 33.1104
0.6 25.68 26.3009

0.4 1 72.00 69.8154
0.8 49.80 48.4403
0.6 34.68 33.9967

k = 10

0.2 1 118.56 122.4372
0.8 84.6 84.7666
0.6 59.4 58.3511

0.4 1 354.0 369.7882
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mitted to the interior of the drop. With a further increase in the
value of the viscosity ratio, k > 1, the centre of the inside cir-
culation also starts to move towards the front stagnation point.
60 × 70 0.7746 0.2631 1.0377 1.9920 1.9401 3.9321
60 × 85 0.7818 0.2645 1.0463 1.9780 1.9029 3.8809

. Results and discussion

The scaling of the governing equations and of the boundary
onditions suggests this flow to be governed by six dimension-
ess groups, namely, the Reynolds number (Reo), concentration
f the dispersed phase (Φ), characteristic viscosity ratio (k), den-
ity ratio (λ), power-law index (no) and drag coefficient (Cd). In
his study, the roles of all these parameters are studied, except
hat of the density ratio (λ). Following the recent works of
uncu [53] and of Feng and Michaelides [54] who found that
he drag coefficient values of a fluid sphere to be virtually inde-
endent of the density ratio over the range of 0.1 ≤ λ ≤ 10, thus,
his ratio was set equal to unity in this work. Further, in this
tudy, extensive numerical results have been presented over the
ollowing ranges of parameters: 1 ≤ Reo ≤ 200, 0.2 ≤ Φ ≤ 0.6,
.1 ≤ k ≤ 50 and 0.6 ≤ no ≤ 1.6.

.1. Validation of results

Before presenting the new results for power-law fluids, it is
esirable to ascertain the accuracy and reliability of the numer-
cal results obtained in this work. This is accomplished by
omparing the present results with the previously available reli-
ble values of the drag coefficients available in the literature.
ince the numerical solver used here has been extensively vali-
ated for the limiting cases of the flow of Newtonian fluids past
solated bubbles, drops and solid particles and in ensembles of
roplets elsewhere [7,19], only the additional comparisons are
hown for the case of slow motion (Reo = 1) of ensembles of
ewtonian fluid spheres in power-law liquids with the approx-

mate results of Jarzebski and Malinowski [40] (Table 2). For
ll values of the viscosity ratio and the power-law index, the
wo values are seen to be within ±5% of each other. Broadly
peaking, the two values deviate increasingly as the degree of
hear-thinning increases. This is not at all surprising since the
pper and lower bounds diverge with the increasing degree of
hear-thinning behaviour. Furthermore, differences of this mag-
itude are not at all uncommon in such numerical studies due to

he differences stemming from grid errors, solution procedure,
tc. [52]. In view of these factors and based on our previous
xperience [7,19], the present results are believed to be reliable
nd accurate to within ±2–4%.

F
Φ

0.8 215.64 208.9723
0.6 125.64 117.5646

.2. Flow patterns

The translation of a fluid sphere is different from that of a solid
phere due to the internal circulation within the drop, which is
trongly influenced by the viscosity ratio, k. Therefore, owing to
he finite angular velocity on the surface of the drop, the point of
eparation is the point at which this velocity becomes zero. Cur-
ently available results show that there will be no recirculation
or any value of the Reynolds number for k ≤ 1 for Newtonian
7,53,54] and in power-law fluids [19] provided the drop retains
ts spherical shape. Similarly, no such return-flow occurs for the
ase of Reynolds number up to Reo ≤ 20 for any value of the
iscosity ratio and power-law index.

Fig. 2 shows the effect of the viscosity ratio, k, on the stream-
ines (upper half) and the iso-vorticity (lower half) contours for
he case of a shear-thinning (no = 0.6) fluid past an ensemble
f Φ = 0.2 at Reo = 200. From Fig. 2(a), it can be seen that
or k = 0.1, both streamlines and vorticity contours inside and
utside the drop are symmetric and this trend continues for
treamlines up to k = 1, but the vorticity contours begin to show
symmetry due to the increasing amount of vorticity being trans-
ig. 2. Effect of k on streamlines and iso-vorticity contours of an ensemble of
= 0.2 at Reo = 200 and no = 0.6.
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ig. 3. Effect of k on streamlines and iso-vorticity contours of an ensemble of
= 0.2 at Reo = 200 and no = 1.6.

his is so in part due to the large amount of vorticity is being
reated on the surface of the drop which has to be to accommo-
ated inside the drop. Fig. 3 shows the effect of the viscosity
atio on the streamlines and iso-vorticity contours for the case
f a shear-thickening (no = 1.6) fluid for Φ = 0.2 at Reo = 200.
ualitatively similar trends of the streamlines and vorticity pat-

erns have been observed for the other values of the Reynolds
umber, power-law index, characteristic viscosity ratio and the
rop hold-up, hence these are not shown here. Furthermore, it is
orthwhile to add here that for k � 1, the inner Reynolds number
ould be large and this could lead to asymmetry and instabil-

ty of the flow within the droplet. However, since the minimum
alue of k in the present study is only 0.1, this phenomenon was
ot observed here. On the other hand, this could easily occur in
ubbles leading to significant deviations from symmetric flow
onditions.

Further examination of the detailed pressure coefficient,
ffective viscosity and tangential velocity on the surface of a
epresentative drop revealed these to be similar as that for Newto-
ian systems [7] and hence these are not repeated here. However,
he key points are summarized here. Broadly, for fixed values
f the Reynolds number and the concentration of the dispersed
hase, the surface pressure coefficient in the front half of the
rop is almost independent of the value of the power-law index,
articularly for k ≤ 1. In contrast, in the rear half of the drop sur-

ace, a definitive influence of no is seen depending on the value
f k. As the value of k is increased, the effect of no on surface
ressure coefficient in the rear half of the drop becomes signifi-
ant. For the case of shear-thinning fluids (no < 1), the recovery

g
o
f
fl

Fig. 4. Effect of no on Cd as a function of Reo for an
ng Journal 139 (2008) 224–235

f pressure in the rear end of the drop is larger than in the case
f Newtonian fluid. Thus, Cdp is smaller for shear-thinning flu-
ds than that in the case of Newtonian fluids; for the case of
hear-thickening fluids (no > 1), an opposite trend is observed.
imilarly, the effect of the power-law index on the tangential
elocity is more significant for large values of the characteristic
iscosity ratio irrespective of the values of the Reynolds number
nd the concentration of the dispersed phase. Thus, for instance,
or all values of Reo, k and Φ, the value of the tangential velocity
s larger in shear-thinning fluids than in the case of Newtonian
uid. For shear-thickening fluids (no > 1), an opposite trend has
een observed.

.3. Drag phenomena

Fig. 4 shows the effect of the power-law index on the total
rag coefficient as a function of the Reynolds number for Φ = 0.2
or different values of k. For all values of k and no, the typical
ehaviour of Cd–Reo is qualitatively similar, i.e., as the value
f the Reynolds number increases, the total drag coefficient
ecreases. For a fixed value of the characteristic viscosity ratio
nd the Reynolds number, as the value of the power-law index
ncreases, the drag coefficient increases. The shear-thinning
ehaviour is seen to reduce the drag below its Newtonian value
hereas shear-thickening is seen to augment it. For fixed values
f the power-law index and the Reynolds number, as the value of
he characteristic viscosity ratio increases, the drag coefficient
ncreases due to the suppression of the internal circulation. Qual-
tatively similar trends have been observed for the other values
f the volume fraction of the dispersed phase. Fig. 5 shows the
ffect of the concentration of the dispersed phase on the total
rag coefficient for a shear-thinning fluid, no = 0.6 (a–c) and a
hear-thickening fluid, no = 1.6 (d–f) for different values of k. For
oth values of no, although, for all values of k and any fixed value
f Reo, as the value of Φ increases, the value of Cd increases,
ut the effect of Φ is more significant for large values of k, i.e.,

oing towards the solid-like particles. Fig. 6 shows the effect
f the characteristic viscosity ratio on Cd as a function of Reo
or a shear-thinning fluid, no = 0.6 (a–c) and a shear-thickening
uid, no = 1.6 (d–f) for different values of Φ. Irrespective of the

ensemble of Φ = 0.2 for different values of k.
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Fig. 5. Effect of Φ on Cd as a function of Reo when no = 0.6 (a–c) and no = 1.6 (d–f) for different values of k.

Fig. 6. Effect of k on Cd as a function of Reo when no = 0.6 (a–c) and no = 1.6 (d–f) for different values of Φ.
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Fig. 7. Effect of no on Cdp/Cdf as a function of R

ature of fluid, for all values of Φ and Reo, as the value of the
haracteristic viscosity ratio increases, the value of Cd increases,
hough the effect of the characteristic viscosity ratio is seen to
e more significant for large values of Φ.

In order to delineate the relative contributions of the indi-
idual drag coefficients, the present results have been further
nalyzed in terms of the ratio (Cdp/Cdf). Fig. 7 shows the vari-

tion of this ratio with the power-law index for Φ = 0.2 for
ifferent values of k. For all values of k and of no, the effect
f Reo on (Cdp/Cdf) is modest up to about Reo ≤ 20, thereby
uggesting that both viscous and pressure forces rise more or

e
f
(
e

Fig. 8. Effect of Φ on Cdp/Cdf as a function of Reo when no
an ensemble of Φ = 0.2 for different values of k.

ess at the same rate. Beyond this value of the Reynolds number,
his ratio increases thereby suggesting poor pressure recovery
n the rear of the drop. For all values of k and of Reo, as the
alue of no increases the value of (Cdp/Cdf) decreases; how-
ver, this dependence weakens with the increasing value of k.
ualitatively similar trends have been observed for other values
f the volume fraction of the dispersed phase. Fig. 8 shows the

ffect of the volume fraction of the dispersed phase on (Cdp/Cdf)
or a range of values of Reo for a shear-thinning fluid, no = 0.6
a–c) and for a shear-thickening fluid, no = 1.6 (d–f) for differ-
nt values of k. For k = 0.1, the effect of Φ is negligible up to

= 0.6 (a–c) and no = 1.6 (d–f) for different values of k.
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Fig. 9. Effect of k on Cdp/Cdf as a function of Reo whe

eo < 50 in the case of shear-thinning fluids, whereas it is negligi-
le for Reo > 50 in the case of shear-thickening fluids. However,
s the value of k is gradually increased, the effect of Φ becomes
ominant for both shear-thinning and shear-thickening fluids.
or shear-thickening fluids, the effect of Reo on the value of
Cdp/Cdf) becomes negligible for large values of Φ when k ≥ 2.
ig. 9 shows the effect of the characteristic viscosity ratio on the
alue of (Cdp/Cdf) as a function of Reo for a shear-thinning fluid,
o = 0.6 (a–c) and for a shear-thickening fluid, no = 1.6 (d–f) for
ifferent values of Φ. For shear-thinning fluids, the effect of k
n (Cdp/Cdf) is very small for small values of Φ; however, it
ncreases progressively as the value of Φ increases. For shear-
hickening fluids, as the value of Φ increases, (Cdp/Cdf)–Reo
rofile becomes flat for all values of k. Furthermore, it will be
seful to delineate the critical values of the Reynolds number at

hich the ratio (Cdp/Cdf) is approximately one and it is observed
hat for fixed values of k, the critical value of the Reynolds num-
er increases as the value of no and/or Φ increases. Broadly,
his ratio is constant at low Reynolds numbers (up to about

d,o =
(

2(2no+1)

Reo

) {
2 (1 − Φ(3no+2)/(2no+1)) +

(1 − Φno/(4no−1)) (1 − Φ(3no+2)/(2no+1)) +
10–20 and then begins to increase). In shear-thickening flu-
ds, it seems to stay constant up to somewhat larger values of the
eynolds numbers than that in shear-thinning fluids otherwise
nder identical conditions. Clearly, the exact transitional values

t
e
a
(

0.6 (a–c) and no = 1.6 (d–f) for different values of Φ.

f the Reynolds number are determined by an intricate interplay
etween the severity of the shear-thinning or shear-thickening
uid behaviour and the inter-drop separation, i.e., the value
f Φ.

Finally, from an engineering application standpoint, it is use-
ul to develop a predictive correlation based on the present
umerical results which can be used to estimate the sedimenta-
ion velocity of ensembles of mono-size Newtonian fluid spheres
n power-law liquids. As far as known to us, there is no such prior
orrelation available in the literature embracing such wide rang-
ng conditions. The following form was found to be satisfactory
o correlate the present numerical results:

d = Cd,o

{
1 + 0.012(1 − Φ)3no−2Re0.92

o k0.19
}

(16)

here Cd,o is given by

+ 2)/(no + 1) + 2Φ(3no+2)/(2no+1)
]
k

− (3/2)Φno/(4no−1) + (3/2)Φ(3no+2)/(2no+1) − Φ2
]
k

}
(17)

or no = 1 and Reo → 0, Eq. (17) reduces to the analytical solu-
ion of Gal-Or and Waslo [39]. Eq. (16) reproduces the present
umerical results (1370 data points) with an average error of
13.4% which rises to maximum of ±57.5%. However, if
he results for Reo = 1 relating to shear-thickening fluids are
xcluded, the average and maximum errors are reduced to ±10
nd ±40%, respectively. For the limiting condition of no = 1, Eq.
16) reduces to our expression for a Newtonian continuous phase
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[19] N. Kishore, R.P. Chhabra, V. Eswaran, Chem. Eng. Sci. 62 (2007)
ig. 10. Comparison of the present numerical values of Cd with those obtained
y using the proposed correlation.

7]. Furthermore, admittedly it would be desirable to include the
imiting cases of k = 0 (bubbles) and k = ∞ (solid spheres) in Eq.
16), but unfortunately, due to the paucity of results in the ranges
f 0 ≤ k ≤ 0.1 and 50 ≤ k ≤ ∞, it is proved impossible to accom-
lish this goal with acceptable levels of accuracy. However, Eq.
16) can be used to estimate the drag for extreme values of the
haracteristic viscosity ratio, i.e., for k = 0 and k = ∞ in the range
f 0.6 ≤ n ≤ 1.6 for the creeping flow conditions. On the other
and, reliable correlations are already available in the literature
or the cases of swarms of bubbles [23,24] and assemblages of
olid spheres [33] in power-law liquids in the intermediate range
f Reynolds numbers. Finally, it is appropriate to add here that
he present results in these limits (k = 0 and k = ∞) are consistent
ith the literature values [7,19]. Fig. 10 shows the parity plot of

he numerical and predicted results using Eq. (16).
In summary, it is appropriate to reiterate here that though the

resent results are based on an idealized cell model which does
ot take into account the effects arising from the collisions, drop
eformation, coalescence, etc. which inevitably occur in moder-
te to concentrated systems. In spite of these limitations, Eq. (16)
oes offer an useful first order approximation for the estimation
f the rate of sedimentation of ensembles of droplets in quies-
ent power-law liquids simply from a knowledge of the pertinent
ariables like drop size, concentration of the dispersed phase,
ensity and power-law constants of the two phases. Of course,
he future studies will try to address the issues of collisions,
hape changes, etc.

. Conclusions

In this work, numerical predictions of drag on ensembles of

uid spheres sedimenting in power-law fluids have been used

o delineate their dependence on the Reynolds number, power-
aw index, characteristic viscosity ratio and the volume fraction
f the dispersed phase. For fixed values of the characteristic

[

[

ng Journal 139 (2008) 224–235

iscosity ratio and the Reynolds number, the total drag coeffi-
ient in a shear-thinning fluid is reduced below its Newtonian
alue whereas it is augmented in shear-thickening fluids. For
xed values of the power-law index and Reynolds number, as

he value of the characteristic viscosity ratio increases, the drag
oefficient also increases due to the reduced level of internal
irculation. Though, for all values of k and of Reo, as the value

increases, the value of Cd increases, this effect is more signif-
cant for large values of k which is again due to the decreasing
evel of circulation. For shear-thinning fluids, the effect of Φ on
Cdp/Cdf) is negligible up to Reo = 50 for the value of k = 0.1. For
hear-thinning fluids (no < 1), the effect of k on (Cdp/Cdf) is very
eak for small values of Φ which becomes progressively more

ignificant as the value of Φ increases. On the other hand, for
hear-thickening fluids (no > 1), the effect of Reo on (Cdp/Cdf) is
egligible for Reo > 50 for k = 0.1, whereas, for k ≥ 2, the effect
f Reo on the value of (Cdp/Cdf) becomes negligible for large
alues of Φ. For small values of Φ, the effect of k is negligi-
le on (Cdp/Cdf) for any value of Reo. For any combination of
he values of Reo, k, no and Φ in the range studied herein, no
ow separation was observed. A simple predictive expression is
eveloped which can be used to estimate the settling velocity of
n ensemble of uniform size droplets in clean power-law fluids.
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